A Deep Learning-Based Fault Diagnosis of Leader-Following Systems

نویسندگان

چکیده

This paper develops a multisensor data fusion-based deep learning algorithm to locate and classify faults in leader-following multiagent system. First, sequences of one-dimensional collected from multiple sensors followers are fused into two-dimensional image. Then, the image is employed train convolution neural network with batch normalisation layer. The trained can three typical fault types: actuator limitation fault, sensor failure communication failure. Moreover, exist both leaders followers, be identified through indicating that developed diagnosis distributed. effectiveness learning-based demonstrated via Quanser Servo 2 rotating inverted pendulums leader-follower protocol. From experimental results, classification accuracy reach 98.9%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep learning-based CAD systems for mammography: A review article

Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...

متن کامل

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

A Deep Learning Approach for Condition-based Monitoring and Fault Diagnosis of Rod Pump System

Petrochemical industry is one of the key industry areas where Internet of Things (IoTs) and big data analytics could be widely applied to support smarter production and maintenance. In oil and gas exploitation, sucker-rod pumping systems are used in approximately 90 percent of artificially lifted wells. An automatic pipeline is crucial for real-time condition monitoring and fault detection of t...

متن کامل

A Model-Based Fault Detection and Diagnosis Scheme for Distributed Parameter Systems: A Learning Systems Approach

In this note, fault detection techniques based on finite dimensional results are extended and applied to a class of infinite dimensional dynamical systems. This special class of systems assumes linear plant dynamics having an abrupt additive perturbation as the fault. This fault is assumed to be linear in the (unknown) constant (and possibly functional) parameters. An observer-based model estim...

متن کامل

A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis

Bearing fault diagnosis is imperative for the maintenance, reliability, and durability of rotary machines. It can reduce economical losses by eliminating unexpected downtime in industry due to failure of rotary machines. Though widely investigated in the past couple of decades, continued advancement is still desirable to improve upon existing fault diagnosis techniques. Vibration acceleration s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2022

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2022.3151155